

Intensity Mapping of Cosmic Structures

Tzu-Ching Chang
Jet Propulsion Laboratory, California Institute of Technology

GBT-HIM

Victor Liao (ASIAA) Chun-Hao To (Stanford), Chen-Yu Kuo (Chung-Shan U.)
Kiyo Masui, Richard Shaw (UBC), Eric Switzer (Goddard)
Nick Luciw, Niels Oppermann, Ue-Li Pen (CITA),
Jeff Peterson (CMU), Tabitha Voytek, Yi-Chao Li (UKZN)
Chris Anderson, Peter Timbie (U.Wisc)

TIME

Jamie Bock (PI), Matt Bradford, Abigail Crites, Yun-Ting Cheng, Steve Halley-Dunsheath, Jonathan Hunacek, Roger O'Brient, Jason Sun, Bade Uzgil (Caltech/JPL)
Patrick Koch, Chao-Te Li (ASIAA), Mike Zemcov (RIT), Dan Marrone (Arizona)
Asantha Cooray, Yan Gong (UCI)

The Observable Universe

SPHEREX

Intensity Mapping of Cosmic Structures

Line Intensity Mapping (IM)

courtesy of Phil Korngut (Caltech)

- •"Intensity Mapping" (Chang+ 2008, Wyithe & Loeb 2008):
 - •Measure the collective emission from a large region, more massive and luminous, without spatially resolving down to galaxy scales.
- Use spectral lines as tracers of structure, retain high frequency resolution thus redshift information
- Measure brightness temperature fluctuations on the sky: just like CMB temperature field, but in 3D
- Low-angular resolution redshift surveys: economical, large survey volumes
- Confusion-limited. Foreground-limited.

The 21cm Line

$$\frac{n_{F=1}}{n_{F=0}} = 3e^{-\Delta E/kT_s}$$

- Neutral hydrogen: most abundant baryonic element in the Universe.
- 21cm radiation: ground state spin-lip hyperfine transition of neutral hydrogen
- Optically thin along most line of sight
- Can be observable up to $z\sim150$, in emission or absorption against the CMB background:
 - $T_{spin} < T_{cmb}$: absorption (~15 < z < ~150)
 - $T_{spin} > T_{cmb}$: emission (z < 10)
- Expressed in terms of brightness temperature:

$$\Delta T = \frac{3n_{\rm HI}\lambda^3 T_*}{32\pi H \tau_{1\to 0} (1+z)} \left(1 - \frac{T_{cmb}}{T_s}\right)$$

$$= 180 \left(1 + \delta\right) \left(\frac{\Omega_{HI}}{10^{-3}}\right) \left(\frac{h}{0.73}\right) \left(\frac{\Omega_m + (1+z)^{-3}\Omega_{\Lambda}}{0.35}\right)^{-0.5} \left(\frac{1+z}{1.9}\right)^{0.5} \mu K$$

And all other spectral lines

- CO IM CO rotational lines (CO(1-0) at 115 GHz rest frame): Righi+ 08, Visbal & Loeb 2010, Carilli 2011, Gong+11, Lidz+11, Pullen+13, Breysse+14, Breysse+15, Li+ 15, Mashian+ 15, Keating+15, Keating+16)
- [CII] IM singly ionized carbon (158 μm rest frame): Gong+12, Silva+14, Yue+15, Serra+16, Cheng+16
- Lyman-alpha IM Lya emission(1216 A rest frame): Silva+12, Pullen+13, Croft+16
- H-alpha IM Ha emission (6562 A rest frame): Gong+ 16; Silva+ 17
- Hell IM Hell (1640 A): Visbal, Haimann, Byran 2015

Intensity Mapping Sciences

A tracer of the 3D large-scale cosmic structures:

Luminosity-weighted density field

Astrophysics: L(M) Cosmology: P_L(k, z)

Brightness temperature fluctuations dT(θ, v)

21cm Intensity Mapping Experiments

GBT-HIM multibeam

Tian-Lai/

CHIME

90 m

SKA-mid Telescope

BINGO

(21cm, CO, [CII], Lya, Ha) Intensity Mapping Experiments

IM: a representative view of the Universe

Peak of Star formation

First galaxies

Z

Talk Outline

Large-scale Structure (LSS): Cross-correlation

21cm Intensity Maps at z~0.08 with Parkes Telescope

HI Intensity Maps from the Parkes Telescope

• Parkes L-band multi-beam observation, 0.06 < z < 0.1, over 1500 sq. deg., 150 hrs

Parkes HI-2dF Cross-power spectrum

Anderson+17, arXiv:1710.00424

- Parkes L-band multi-beam observation, 0.06 < z < 0.1, over 1500 sq. deg., 150 hrs
- Significant cross-power spectrum with 2dF galaxy measured at ~12 sigma.
- Comparison with individual detection HI surveys, HIPASS and ALFALFA.
 - Cross-power amplitude ~ $T_{
 m b}$ $b_{
 m HI}$ $b_{
 m opt}$ r
 - b_HI=0.85, Tb=0.064 mK (ALFALFA; Marin+ 2010), b_opt~I (Cole+ 2005).
 - Cross-power shape: curves include linear + non-linear RSD effects.
 - r likely < I. Power deficit at k~I.5 h/Mpc

Parkes HI-2dF Cross-power spectrum

21cm x (2dF blue, 2dF red)

Anderson+17, arXiv:1710.00424

- Cross-correlating with 2dF blue and red galaxies separately.
- HI follows distribution of blue galaxies but does not trace red galaxies at k~1.5 h/Mpc
- HI-galaxy cross-correlation coefficient appears scale- and color-dependent.
- Neither simple HI halo model nor naive large-scale sims can capture this feature. We need better small-scale modeling!

Large-scale Structure (LSS): Auto-power spectrum

21cm Intensity Maps at z~0.8 with Green Bank Telescope

21cm IM proof of concept

Pilot program at the Green Bank Telescope (GBT)

- Frequency: 700-900 MHz
 - 0.6 < z < 1
- Spatial beam ~ 15'
 - 9 h-1 Mpc at z~0.8
- Spectral channel ~ 24 kHz
 - binned to 0.5 MHz
 - ~2 h-1 Mpc
- 100-m diameter. Large collecting areas
- Foregrounds are ~1000x stronger than the 21cm signals
- First detection in cross-correlation with DEEP2 galaxies at z=0.8 (Chang, Pen, Bandura, Peterson, 2010, Nature)

21cm Intensity Mapping at the GBT

- Frequency: 700-900 MHz
 - 0.6 < z < 1
- Spatial beam ~ 15'
 - 9 h-1 Mpc at z~0.8
- Spectral channel ~ 24 kHz
 - binned to 0.5 MHz
 - ~2 h-1 Mpc

- 200-hr HI survey of the WiggleZ fields at 0.6 < z < I
- HI cross-power and auto-limits in 2013 at z=0.8 implies:
- $\Omega_{\text{HI}} \, b_{\text{HI}} = [0.62 \, ^{+0.23} \, _{-0.15}] \times 10^{-3}$

Auto-power limits, Switzer+13, GBT-HIM

Cross-power, Masui+ 13, GBT-HIM

GBT-HIM Status Update

GBT Wiggle Z Ihr field

- Analysis of ~800 hours of GBT observations 2010-2015.
 - WiggleZ Ihr, I Ihr, I 5hr, 22hr fields
- Improve HI power spectrum limits
- Measure HI-optical cross-power RSD effects
- Focus on the Ihr field, ~100 square deg, 0.6 < z < 1:
 - Alternative Foreground cleaning techniques (Wolz + GBT-HIM team, 2016)
 - Polarization calibration improvement (Liao, Chang et al. 2016)
 - Polarization leakage power spectrum estimates (To, Chang et al., in prep)
 - Handling of residual ground-spill contamination (Liao, Chang, Masui et al., in prep)

GBT-HIM Status Update

• Analysis of ~800 hours of GBT observations 2010-2015.

GBT Wiggle Z Ihr field

- WiggleZ Ihr, I Ihr, I5hr, 22hr fields
- Improve HI power spectrum limits
- Measure HI-optical cross-power RSD effects
- Focus on the 1hr field, \sim 100 square deg, 0.6 < z < 1:
 - Alternative Foreground cleaning techniques (Wolz + GBT-HIM team, 2016)
 - Polarization calibration improvement (Liao, Chang et al. 2016)
 - Polarization leakage power spectrum estimates (To, Chang et al., in prep)
 - Handling of residual ground-spill contamination (Liao, Chang, Masui et al., in prep)

Work in progress: Updated HI auto-power spectrum at z~0.8

Chang, Liao, To + GBT-HIM, in prep.

- Currently running jackknife tests and improving maps.
- Combining cross and auto-power for a better amplitude constraint

GBT-HIM

21cm Intensity Mapping for BAO & RSD studies

- GBT-HIM Project:
 - Building a 7-beam receiver at 700-900 MHz for redshifted HI survey at 0.6< z < I for BAO measurements.
- Use Short-backfire Antenna (SBA)
 with a edge-tapered reflector; with
 a cryogenic HDPE cover to reduce
 Tsys.
- Prototype tested on GBT in December 2014. Passed Design Review in October 2016.

PI:T.-C. Chang

Large-scale Structure (LSS): Cross-correlation

[CII] Intensity Maps at z~2-3 with Planck and BOSS

Planck nine frequency maps

Planck Collaboration

Planck x BOSS/CMASS

w/ Anthony Pullen, Olivier Doré, Shirley Ho, Paolo Serra

- [CII]: rest frame 158 um = 1.9 THz, brightest line in SFR galaxies
- Use Planck x BOSS to extract redshifted [CII] in Planck (projected along dz) associated with LSS traced by quasars
- [CII] tracers
 - Planck: 545 GHz z(CII)~2-3
- LSS tracers
 - BOSS: CORE sample at z=2-3
 - CMASS: LRGs at z~0.5; null-test.
- Foregrounds
 - Galactic dust: 43% masked using Planck mask
 - CMB: subtracted using Planck 100 and 143 GHz bands
 - CIB, tSZ, and [CII] jointly modeled in the cross-correlation with 353 and 857 GHz bands

Planck x BOSS/CMASS

QSOx353

10⁰

2.0

Ζ

1.5

3.0

3.5

2.5

- Blue curve: best-fit model of CIB T_{dust}, z-dep., A(tSZ), A(CII)
- 100 < / < 1000,0.02 < k_{perp} < 0.2 [h/Mpc]

0.5

1.0

 $(z)^3$

QSOx545

QSOx857

Planck x BOSS/CMASS

Pullen+ 2017, arXiv:1707.06172

- $I_{[CII]} = 5.5^{+4.8}_{-4.2} (95\%) \times 10^4 \text{ Jy/sr}$
- Constrain cosmic mean of [CII] at z=2-3; C+(z) abundance.

Cosmic Reionization (EoR):

[CII] Intensity Maps at z~6-9 with TIME

Cosmic Reionization (EoR) & Cosmic Star Formation History:

[CII] Intensity mapping at z~6-9 & CO Intensity mapping at z=0.5-2

with TIME

CO/[CII]/Ha intensity mapping

Lidz et al. 2011

- CO/[CII]/Ha trace star formation activities on large-scales at EoR, anti-correlate with 21cm emissions on ionized bubble scales and can be used to derive bubble evolution and reionization history (Lidz et al. 2009; Chang et al. 2015).
- Continuum foregrounds are much less of an issue. Need to worry about line interlopers.

[CII] at high-z

TIME collaboration

- [CII] is the major coolant in ISM, a tracer of Star formation activities.
- $L_{[CII]}/L_{FIR}$ appears to be > 0.01 at high-z from recent ALMA observations (Aravena et al. 2016, Capak et al. 2015)
- ALMA starts to constrain 108.5-9 L_{sun} systems (Aravena et al. 2016, Hayatsu+17)

TIME: [CII] Intensity Mapper Tomographic Ionized-C Mapping Experiment

- A [CII] Intensity Mapper for EoR at 6<z<9
 - 1840 TES bolometer array
 - 195-295 GHz, 32-channel spectrometer
 - to be installed on APA 12-m.
 - Caltech (J. Bock), JPL (M. Bradford, T.-C. Chang), ASIAA (C.-T. Li), UCI (A. Cooray), U Arizona (D. Marrone)
 - Engineering run expected winter 2018.
- [CII] IM traces star formation activities
- 1000 hours of observation, starting ~2019

TIME Instrument

TIME collaboration

TIME measures [CII] Power Spectra at z~6-9

- [CII] intensity mapping constrains the integral of luminosity function via clustering and shot-noise power spectrum
- TIME measures [CII]
 clustering on large-scales,
 the luminosity-weighted bias
 and mean [CII] amplitude at
 5.5 < z < 8.5 at high
 significance (model
 dependent).

TIME collaboration

TIME measures CO/H_2 abundance at z=0.5-2

- TIME will measure multiple
 CO J rotational transitions
 at 0.5 < z < 2
- Can be achieved via inband cross-correlations of different J lines
- TIME will constrain the cosmic molecular hydrogen abundance across redshifts

TIME collaboration

LSS and EoR Sciences:

Lya, Ha Intensity Maps at z~0-10 with SPHEREx

SPHEREX

An All-Sky Spectral Survey

DESIGNED TO EXPLORE:

THE ORIGIN OF THE UNIVERSE THE ORIGIN AND HISTORY OF GALAXIES THE ORIGIN OF WATER IN PLANETARY SYS**TEMS**

PI: J. Bock

PS: O. Doré

http://spherex.caltech.edu

Line Intensity Mapping with SPHEREx

Fluctuations in Line Emission

Doré, Bock et al., arXiv:1412.4872

SPHEREx: low-resolution spectroscopic all-sky survey

For <u>every</u> ~6" pixel over the entire sky:

- \Rightarrow R=40 spectra spanning (0.75 μm < λ < 4.81 μm).
- \Rightarrow R=150 spectra (4.1 μm < λ < 4.81 μm).
- SPHEREx will measure 3D clustering of multiple line tracers at high SNR their luminosity-weighted biases.
- SPHEREx will map SFR throughout cosmic time
- SPHEREx might have sensitivity to detect Lya from EoR
- SPHEREx currently in MIDEX competition.

Summary

- Line Intensity Mapping offers an exciting and unique probe of a significant fraction of the Universe
- 21cm Intensity Mapping proof of concept demonstrated at z~0.8 (Chang et al. 2010).
 - 21cm IM at z~0.08 cross-power spectrum probes astrophysics (Anderson et al. 2017).
 - Opens up 21-cm 3D large-scale structure studies (GBT-HIM multi-beam array; HIRAX, CHIME, Tian-Lai in progress; and possibly SKA1-mid.)
- [CII] Intensity Mapping offers a complementary probe of the Epoch of Reionization
 - TIME will probe the [CII] source clustering at 6 < z < 9. First light expected 2018.
- CO Intensity Mapping: a \sim 2-sigma detection at z=2-3 (Keating et al. 2016).
 - TIME will probe CO and infer molecular gas density at 0.5 < z < 2.
- Lyman-alpha IM: a 3-sigma cross-correlation detection at z~2-3.5 (Croft et al. 2016).
 - SPHEREx may potentially probe Lya IM at $z\sim6-8$. HETDEX at z=2-3.
- EoR 21-cm detection may come from several groups with different approaches soon (LOFAR, PAPER, MWA). HERA/SKA1-LOW will bring next generation transformational sciences.